
#### **EPFL**

ME 5

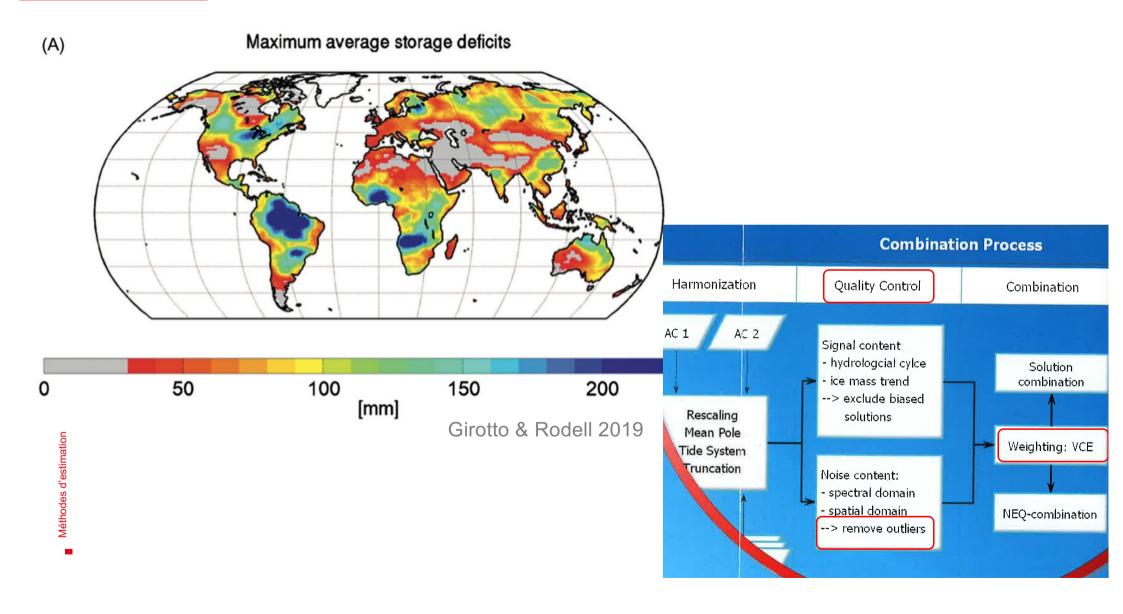
# ME Cockpit de matières et de compétences

Comment réussir à observer et estimer avec confiance?



### Direction of GRACE flight -



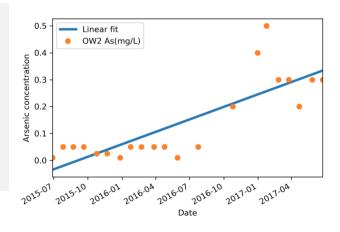







Increasing time

Méthodes d'estimation




### **EPFL**

### ME 13-1: Changer le modèle fonctionnel

- Choix des paramètres: alternative pour une droite
  - Modèle classique: paramètres a et b
    - avantage: modèle linéaire
    - inconvénient: détours pour obtenir  $t_{min}$ ,  $t_{max}$  et leurs cofacteurs
  - Modèle alternatif: paramètres  $t_{min}$  et  $t_{max}$ 
    - inconvénient: modèle non-linéaire
    - avantage: on obtient directement  $t_{min}$ ,  $t_{max}$  et leurs cofacteurs
- Elimination des paramètres → conditions identiques!
  - *n* équations à 2 paramètres
  - *n*-2 équations sans paramètres

Démonstration formelle en classe



### **EPFL**

### ME 13-2: conditions ou paramètres?

- Choix du type de compensation
  - Cours: moyenne, triangle, quadrilatère, gaz parfait
  - Polycopiée: exercices résolus 3.7.1 et 4.9.1: résistances
    - En particulier: trace  $Q_{\hat{v}\hat{v}}=2$
    - chapitres 2, 3, 4 et 6: minerai (= fil rouge)
  - Tests 2 et 3
- Exercice 11 → avantages et inconvénients
  - Choix des conditions valeurs approchées
  - Taille des matrices
  - Calculs, itérations, contrôles
  - Résultats compensés et fonctions des résultats compensés
  - Indicateurs de fiabilité

Trop souvent, on oublie les conditions!

 $Q_{\hat{n}\hat{n}}=2$ 

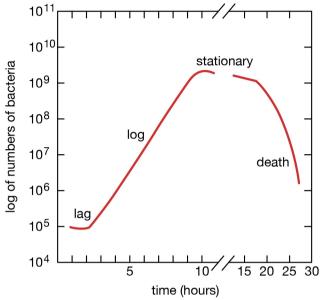
### **EPFL**

## ME 13-3: conditions et paramètres?

- Où sont les observations ?
  - Inversion de l'abscisse et de l'ordonnée
    - Pour la sinusoïde, on observe  $y_i$  (imparfaitement) pour  $t_i$  parfait
    - Si l'on observe  $t_i$  pour  $y_i$  parfait  $\rightarrow$  exercice 4.10.2
- Conditions avec paramètres
  - Introduction: observation de l'abscisse et de l'ordonnée
    - Les modèles connus ne sont pas applicables
    - Leur application est laborieuse
  - Expression du modèle combiné et cas particuliers
- Applications
  - Régression linéaire: exercice 6.4.1
    - Modèle conditionnel: éliminer 2 paramètres → n = 12, r = 4, u = 0
    - Modèle paramétrique: ajouter des paramètres → n = 12, r = 4, u = 8
    - Modèle combiné → polycopié

Tout sous le même toit!

# ME 13-4: Un autre regard ...


- Exercice 13: gaz parfait revisité
  - Modèles conditionnel et paramétrique connus
  - Même donnée que l'exercice 6
  - Application du modèle combiné, pour chaque état: Conditions avec paramètre  $P_i \cdot V_i - a \cdot T_i = w_i$

#### Démarche

- Choisir une valeur approchée pour a
- Construire w, A et B
- Comparer les résultats avec ceux de l'exercice 6 :
  - résidus, observations compensées, cofacteurs
- Comment calculer a à partir des résultats de l'exercice 6?
- Avantages et inconvénients
  - par rapport au modèle conditionnel (exercice 6)
  - par rapport au modèle paramétrique (moodle, semaine 12)

# **ME 13-5: Changer les observations**

- Fonction d'une observation
  - Croissance bactérienne : fonction exponentielle
  - Choix d'un modèle linéaire
  - Adaptation du modèle stochastique
    - par propagation de variance



- © Encyclopædia Britannica, Inc.
- Statut de la population initiale  $y_0 \rightarrow A$  ignorer ou éliminer  $\neq$  fixer
  - inconnue? → régression linéaire avec deux paramètres a et b m
    modèle fonctionnel et modèle stochastique classiques
  - observée? → +1 observation; avec le même sigma que les autres? modèle stochastique pas forcément classique
  - connue? → régression forcée: fixer a (un seul paramètre: la pente b)
    modèle fonctionnel exotique
    - → pseudo-observation avec un très petit sigma (grand poids) modèle stochastique exotique